TOMP: Opportunistic Traffic Offloading Using Movement Predictions

The 37th IEEE Conference on Local Computer Networks (LCN)
23.10.2012

Patrick Baier, Frank Dürr
and Kurt Rothermel
Outline

• Motivation
• Contributions
• System Model
• Problem Statement
• Approaches
• Evaluation
• Related Work
• Conclusion & Outlook
Motivation (1)

- **Cellular traffic** (e.g. UMTS, HSDPA) is rapidly increasing
 - Cisco\(^1\): No. of mobile Internet users double every year until 2015
 - Ericsson\(^2\): Smartphone traffic will increase by factor 10 until 2016
 ➤ Cellular networks will soon reach their **critical limit**

- What are possible **solutions**?
 - Reduction of network cell size ➔ big manual effort
 - Going back to volume-based pricing ➔ not very attractive for users
 - Utilizing ad-hoc communication techniques ➔ **Opportunistic traffic offloading**

Motivation (2)

- **Opportunistic Traffic Offloading** tackles this problem for multicast communication patterns
 - Data from the infrastructure is sent to only a *subset* of receivers
 - Devices use ad-hoc communication (e.g. Wifi-Direct, Bluetooth) to forward data opportunistically

Requires suitable strategies for cellular receiver selection for optimal performance
Contributions

- We propose an **opportunistic traffic offloading approach**…
 - that only utilizes **device positions** for receiver selection
 - that uses position based **coverage predictions** for receiver selection

- We show that …
 - our approach **reduces the cellular message load** by up to 40%
 - the additional **message delay** that is introduced by this approach is negligible
System Model

• Mobile devices
 ◦ Position sensor (e.g. GPS)
 ◦ Ad-hoc comm. interface with range r_{adhoc}
 ◦ Cellular network interface

• Server
 ◦ Knowledge of road graph
 ◦ Cellular network interface

• Cellular Communication
 ◦ τ_s: Estimated message delay for message of size s
 ◦ But: Real time guarantees on delay cannot be given
Problem Statement

- **Given**
 - Message m
 - Message delivery time t_d
 - Set of mobile devices R to receive m

- **Goal**
 1. Deliver m to all devices in R before t_d
 2. Minimize data transfer on the cellular layer

- **Problem**
 - To which subset $R' \subseteq R$ of devices should m be sent to minimize cellular traffic?
Naïve Approach

- Server broadcasts m to all devices in R
 \[\rightarrow \text{Current situation in cellular networks} \]

- No ad-hoc forwarding of message
- Cellular networks load is maximized:

\[
\text{network load} = |R| \times \text{size}(m)
\]
Opportunistic Extension

- Server sends m to only subset of devices $R' \subseteq R$
- Cellular networks load reduced to: $|R'| \times \text{size}(m)$

General Approach:

1. Determine R' (see upcoming slides)
2. Send m to all devices in R'
3. Devices forward m to other devices until t_d
4. Devices send ACK to server when m is received
5. At time $t_d - \tau_s$:
 - Server sends m to missing devices
Determine R': Static Coverage

- To reduce cellular traffic, R' should be selected in a way that number of ad-hoc messages exchanges is maximized.
- Assumption: Server knows position of devices at t_{start}.
- Idea: Find minimum subset of devices that can cover all other devices with an ad-hoc broadcast \rightarrow Set-Coverage-Problem (NP-hard).

Determine R': Prediction-based Coverage

- Static coverage only considers device position at time t_{start}
- However: Devices can exchange m until t_d and therefore reach more other devices than indicated by the static coverage:

\[
|R'| = 2 \quad \text{After } i \text{ time steps} \quad |R'| = 1
\]

- However: Future movement path of a device is unknown at t_{start}
 → Selection of R' is based on prediction of future movement of devices
Future Coverage Prediction

- Use fraction of overlapping future path as heuristic for coverage
- Project all possible paths with length s_{max} on graph

$$s_{max} = v_{max} \times (t_d - t_{start})$$

$$\text{coverage}(n_i, n_j) = \frac{\text{overlappingPath}(i, j)}{\text{path}(i) + \text{path}(j)}$$

- Extend greedy set-covering algorithm to find R' (see paper)
- Use coverage-metric to identify devices with largest coverage
Evaluation – Setup

- Simulation in ns-2 on road graph of Stuttgart (4 km²)
- CanuMobiSim mobility traces (pedestrian speed)
- Message size: 1 MB
- Communication networks:
 - Ad-hoc forwarding: Bluetooth, range: 10 meters
 - Cellular network: HSDPA, 16 base stations
- Comparison of different approaches:

<table>
<thead>
<tr>
<th>Approach</th>
<th>Reference As</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Broadcast message to all devices in R</td>
<td>NAIVE</td>
</tr>
<tr>
<td>3 Choose $R' \subseteq R$ on base of the static coverage</td>
<td>STATIC</td>
</tr>
<tr>
<td>4 Choose $R' \subseteq R$ on base of the predictive coverage</td>
<td>PREDICTION</td>
</tr>
</tbody>
</table>
Evaluation – Results (1)

→ Number of cellular messages decrease by up to 40%

→ Additional message delay concerns only small fraction of devices
Evaluation – Results (2)

→ Prediction approach chooses the smallest receiver set R'

→ Prediction approach maximizes number of ad-hoc message exchanges
Related Work

• Cellular Traffic Offloading
 ◦ [Balasubramanian et al. 2010], *Augmenting Mobile 3G Using WiFi*
 ◦ [Dimatteo et al. 2011], *Cellular Traffic Offloading Through WiFi Networks*
 → No opportunistic message forwarding, only stationary WiFi-APs

• Opportunistic Traffic Offloading
 ◦ [Han et al. 2010], *Cellular Traffic Offloading Through Opportunistic Communication: A Case Study*
 → Selection of R' based on social contact history of devices → privacy critical
 ◦ [Whitbeck et al. 2010], *Relieving the Wireless Infrastructure: When Opportunistic Networks Meet Guaranteed Delays*
 → Selection of R' based on device density, size of R' is fixed → not considering actual coverage relations
Conclusion and Future Work

Conclusion

• Opportunistic traffic offloading reduces the cellular network load by up to 40%
• Additional delay of the system is negligible small
• Use of movement predictions results in an appropriate receiver set, that shifts most of the communication to the ad-hoc network

Future Work

• Investigate further heuristics for the receiver set selection
• Implement an adaption mechanism that redistributes m over time, depending on the number of received ACK-messages
Thanks for your attention

M.Sc. Patrick Baier

Universität Stuttgart
Universitätsstraße 38
70569 Stuttgart
Germany

patrick.baier@ipvs.uni-stuttgart.de

You can find further information on our research on www.comnsense.de